
Transfromation of a CFG to
Chomsky Normal Form

Jay Bagga

1 Chomsky Normal Form

A CFG is said to be in Chomsky Normal Form (CNF) if every rule is of the form
A→ BC, or
A→ a
where a is a terminal symbol and A,B,C are any variables. In addition, if the language
accepted by the grammar contains λ, then rule S → λ is permitted, where S is the start
variable.

Any CFG can be transformed to a CNF with a finite sequence of steps. In this exercise,
you’ll use JFLAP to transform the following CFG to a CNF.

S → ASA|aB
A→ B|S
B → b|λ
X → A

Input the above grammar into JFLAP, or load the file CFG1.jff. See Figure 1 below. Then
select Convert:Transfrom Grammar.

Figure 1: An Example CFG

2 Transformation to Chomsky Normal Form

The transformation of a CFG to CNF is a series of steps in order. Each step involves removal
of certain productions or addition of new ones so the the new set of productions generates

1

the same language as the old set of productions. The steps are described below.

2.1 Removal of λ-Productions

Figure 2: Finding λ-Productions

Here we look for variables that derive λ. In the CFG above, the production B → λ is
a λ-production. There may be other variables that derive λ. For example, the sequence
of productions A → B,B → λ shows that A derives λ. In Figure 2, we have selected the
highlighted production B → λ since B derives λ. In the window on the right JFLAP informs
you how many more variables that derive λ need to be selected. You can do this one step
at a time or “Do All”. See Figure 3.

Figure 3: Identifying λ-Productions

2

Figure 4: Result of λ-removal

Once all the λ-productions are identified, we remove such productions and modify some
others so as to generate the same language. Here, we need to remove the production B → λ.
However, since the sequence of productions S → aB,B → λ gives S → a, we need to add
this production. We similarly do this for all other variables that derive λ. This result is
shown in Figure 4.

2.2 Removing Unit Productions

Figure 5: Unit removal

3

A unit production is a production of the form C → D. Since a CNF does not permit such
productions, they must be removed and some other appropriate productions added so that
the language of the grammar stays the same. In our example, the unit productions are
A→ B,A→ S,X → A, and S → S. See Figure 5. JFLAP works with a dependency graph
as shown in Figure 5. The four unit productions are shown as arcs. For each pair of variables
C and D in the dependency graph such that there is a directed path from C to D, and for
each production D → w, where w is string that is not a single variable, we add a production
C → w to the grammar. Then we remove all the unit productions. See Figure 6.

Figure 6: Unit removal completed

2.3 Removing Useless Productions

A production is useless if it cannot be used in a derivation. What productions in the grammar
in Figure 6 are useless? JFLAP uses a dependency graph to determine useless productions.
See Figure 7. The nodes of this dependency graph are the variables that derive terminals.
An arc from C to D indicates that there is a C production that has D on the right side.

Now for every node C in the dependency graph that is not reachable from S by a directed
path, all the C productions are useless and are removed. In our example, the X productions
are useless and are removed. The result is shown in Figure 8.

We are now ready for the last step to complete our transformation to a CNF. In Figure 8,
we observe that four productions are highlighted. These are precisely the productions that
are not permitted in a CNF. The other transformations are all in CNF.

4

Figure 7: Identifying useless productions

2.4 Converting to CNF

Figure 8: Useless productions removed

We must now remove each of the four highlighted productions in Figure 8 and add appro-
priate new productions. For example, the production S → ASA is replaced by S → AD(1)
and D(1) → SA, where D(1) is a new variable. See Figure 9. When this process is repeated
for the remining three productions, the CNF is achieved as shown in Figure 10.

5

Figure 9: Modifying productions for CNF

Figure 10: CNF transformation completed

3 Additional Exercise

Repeat the above process to transform the following grammar to CNF.
S → BSB|B|λ
B → bb|λ

4 References

1. Introduction to the Theory of Computation (Third Edition), Michael Sipser. Cengage
Learning. 2013.

2. JFLAP - An Interactive Formal Languages and Automata Package, Susan H. Rodger
and Thomas W Finley. Jones and Bartlett Publishers. 2006

6

